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Abstract
We consider a variant of a discrete space version of Walsh’s spider, see Walsh
(1978 Temps Locaux, Asterisque vol 52–53 (Paris: Soc. Math. de France)) as
well as Evans and Sowers (2003 Ann. Probab. 31 486–527 and its references).
This process can be seen as an instance of a quasi-birth-and-death process, a
class of random walks for which the classical theory of Karlin and McGregor
can be nicely adapted as in Dette, Reuther, Studden and Zygmunt (2006 SIAM
J. Matrix Anal. Appl. 29 117–42), Grünbaum (2007 Probability, Geometry
and Integrable Systems ed Pinsky and Birnir vol 55 (Berkeley, CA: MSRI
publication) pp. 241–60, see also arXiv math PR/0703375), Grünbaum (2007
Dagstuhl Seminar Proc. 07461 on Numerical Methods in Structured Markov
Chains ed Bini), Grünbaum (2008 Proceedings of IWOTA) and Grünbaum
and de la Iglesia (2008 SIAM J. Matrix Anal. Appl. 30 741–63). We give
here a weight matrix that makes the corresponding matrix-valued orthogonal
polynomials orthogonal to each other. We also determine the polynomials
themselves and thus obtain all the ingredients to apply a matrix-valued version
of the Karlin–McGregor formula.

PACS numbers: 02.30.Ik, 02.50.−r

1. Birth-and-death processes and orthogonal polynomials

For the benefit of the reader we start with very classical material.

* Dedicated to Jack Schwartz, who passed away on March 2, 2009.
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If P denotes the one-step transition probability matrix for a birth and death process on the
non-negative integers

P =

⎛
⎜⎜⎜⎜⎜⎝

r0 p0 0 0

q1 r1 p1 0

0 q2 r2 p2

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠

there is a powerful tool to analyze the random walk in question, [KMcG] as well as
[vD, ILMV].

Introduce the polynomials Qj(x) by the conditions Q−1(0) = 0,Q0(x) = 1 and use the
notation

Q(x) =

⎛
⎜⎜⎝

Q0(x)

Q1(x)

...

⎞
⎟⎟⎠

to define the polynomials Qj(x) by the relation

PQ(x) = xQ(x).

This definition is a compact way of writing down the three term recursion relation that
defines the polynomials Qj(x).

One proves the existence of a unique orthogonality measure dψ(x) supported in [−1, 1]
such that

πj

∫ 1

−1
Qi(x)Qj (x)dψ(x) = δij .

The same spectral theorem that is behind the expression above yields the Karlin–McGregor
representation formula

(Pn)ij = πj

∫ 1

−1
xnQi(x)Qj (x)dψ(x).

Many probabilistic properties of the walk are reflected in the orthogonality measure that
appears above. For instance the process is recurrent exactly when the integral∫ 1

−1

dψ(x)

1 − x

diverges. The process returns to the origin in a finite expected time when the measure has a
mass at x = 1. The existence of

lim
n→∞(Pn)ij

is equivalent to dψ(x) having no mass at x = −1.
In some cases all the ingredients that go into this formula can be computed explicitly.
As an example suppose that we have r1 = r2 = · · · = 0, q1 = q2 = · · · = q and

p1 = p2 = · · · = p, with 0 � p � 1 and q = 1 − p.
One can show that

Qj(x) =
(

q

p

)j/2

[2(p0 − p)/p0Tj (x
∗) + (2p − p0)/p0Uj(x

∗) − r0/p0(p/q)1/2Uj−1(x
∗)],
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where Tj and Uj are the Chebyshev polynomials of the first and second kind, and
x∗ = x/(2

√
pq). The polynomials Qj(x) are orthogonal with respect to a spectral measure

in the interval [−1, 1] which can also be determined explicitly.
In [KMcG] one finds an explicit expression for the Stieltjes transform of the measure in

question, from which by use of the classical theory it follows that the absolutely continuous
part of the measure is given by the density√

4pq − x2

(p − p0)x2 − r0(2p − p0)x + r2
0 p + p2

0q

supported in the interval |x| �
√

4pq. Depending on the values of p, p0, r0 one may have
extra point masses in the orthogonality measure dψ(x) introduced above.

In the case of a birth and death process it is, of course, useful to think of a graph like

0 1 2 3

The nodes here represent the states 0, 1, 2, . . . and the arrows go along with the one step
transition probabilities. One should imagine that the graph extends all the way to the right.

The ideas behind the Karlin–McGregor formula seen earlier can be used to study more
complicated random walks. This is the point of the next section. All these developments are
part of a very classical line of work that starts with the moment problem and its powerful
connections with spectral theory. The reader will find lots of historical material along these
lines in [A, DS, S]. For a nice recent presentation see [Si].

2. Going back to M G Krein

Given a positive definite matrix-valued smooth weight function W(x) with finite moments,
consider the skew symmetric bilinear form defined for any pair of matrix-valued polynomial
functions P(x) and Q(x) by the numerical matrix

(P,Q) = (P,Q)W =
∫

R

P(x)W(x)Q∗(x)dx,

where Q∗(x) denotes the conjugate transpose of Q(x).
By the usual Gram–Schmidt construction this leads to the existence of a sequence

of matrix-valued orthogonal polynomials with non-singular leading coefficient, Pn(x) =
Mnx

n + Mn−1x
n−1 + · · ·.

Given an orthogonal sequence {Pn(x)}n�0 of matrix-valued orthogonal polynomials one
gets by the usual argument a three term recursion relation

xPn(x) = AnPn−1(x) + BnPn(x) + CnPn+1(x), (1)

where An,Bn and Cn are matrices and the last one is non-singular. All of this is due to
M G Krein (see [K1, K2]).

It is convenient to introduce the block tridiagonal matrix P:

P =

⎛
⎜⎜⎝

B0 C0

A1 B1 C1

. . .
. . .

. . .

⎞
⎟⎟⎠ .
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If Pi,j denotes the i, j block of P we can generate a sequence of matrix-valued polynomials
Qi(x) by imposing the three term recursion given above. Following the notation of the scalar
case, we have

PQ(x) = xQ(x),

where the entries of the column vector Q(x) are now matrices.
Proceeding as in the scalar case, this relation can be iterated to give

P
nQ(x) = xnQ(x)

and if we assume the existence of a weight matrix W(x) as in Krein’s theory, with the property

(Qj ,Qj )δi,j =
∫

R

Qi(x)W(x)Q∗
j (x)dx,

it is then clear that one can get an expression for the (i, j) entry of the block matrix P
n that

would look exactly as in the scalar case, namely

(Pn)ij (Qj ,Qj ) =
∫

xnQi(x)W(x)Q∗
j (x)dx.

Just as in the scalar case, this expression becomes useful when we can get our hands
on the matrix-valued polynomials Qi(x) and the orthogonality measure W(x). This is the
purpose of this paper in the case of a specific network to be described later on. Note that
we have not discussed conditions on the matrix P to give rise to a measure as in the case
originally considered by M G Krein, where he assumes that the matrices Ci and Ai+1 in P

are the adjoints of each other and that the matrices Bi are symmetric. One can show that the
required condition is that the matrix P should be block-symmetrizable, i.e. by conjugating
with a block-diagonal matrix P should become the type of matrix considered in [K1, K2].
This point has been addressed in theorem 2.1 of [DRSZ].

3. Spider graphs and its variant

In queueing theory people consider discrete time Markov chains where the state space is given
by pairs of integers (n,i) with n = 0, 1, 2, . . . and i between 1 and a fixed m. The first
coordinate is called the level and the second one the phase of the state (n,j ). One is then led to
consider a block tridiagonal matrix as the one-step transition probability of the Markov chain
if transitions in one step are restricted to states in the same level or in the two adjacent levels.
This is a natural area to look for useful applications of the theory of matrix-valued orthogonal
polynomials. For a good reference to the queueing models, where these models are called
Quasi-birth-and-death process (QBD) (see [BB, LR, N, LPT, DRSZ, G2]).

In [GdI], we manage to find the orthogonal (matrix-valued) polynomials, the orthogonality
matrix-valued measure, and we find explicitly the invariant measure for the process in question.
The reader should note that in the case of an ordinary birth-and-death process, such as in
[KMcG] one can prove that the norms of the scalar polynomials Qj(x) give a way to produce
an invariant measure. The point is that the ratio of two consecutive components of the
invariant measure is given by the inverse of the ratio of the squares of the norms of the
orthogonal polynomials. This is a well-known fact, and a simple proof is given in [GdI].

In the block tridiagonal case there is no guarantee that this trick will always work, since
the matrix-valued polynomials Qj(x) will in general have matrix-valued norms. In the case
considered in [GdI] the norms are diagonal matrices and give a good way to compute the
invariant measure, just as in the scalar case. We will return to this point in the last section of
this paper.
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Another paper where a similar type of study is made is [DRSZ]. In this paper the authors
study a number of previously known examples and they consider a new one, depicted by the
network of the type given below, where each of the arms extends to infinity.

I have analyzed this network in [G3] and obtained an explicit expression for its spectral
measure. It is not obvious how to make such a network into one that can be analyzed by means
of matrix-valued orthogonal polynomials, but this can be done, as shown nicely in [DRSZ],
and in this fashion one can start analyzing many complicated direct as well as inverse problems
for large classes of networks. For some extra details see [DRSZ] and the next section in this
paper.

In this paper I consider a variant of the spider graph depicted above, namely one that
looks as in the graph below, where once again the external arms extend to infinity.

4. Some analytical results

Here we collect a few analytical results which are useful in determining the orthogonality
weight for the matrix orthogonal polynomials that go with a block tridiagonal matrix such as
the one given in section 2.

The results below are very useful already in the case when one is dealing with ordinary
tridiagonal matrices and the corresponding scalar-valued orthogonal polynomials, and they
were used in [KMcG] to obtain—in the scalar valued case—the orthogonality weight of some
random walks starting from simpler ones. We will use the same method in the matrix-valued
case.

5
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It is hard to trace the history of these well-known results accurately, but certainly the main
contributors include people like T Stieltjes and A Markov. For a guide to the literature see
[DS, S, Si].

Denote by P the block-tridiagonal matrix

P =

⎛
⎜⎜⎜⎜⎜⎝

B0 C0

A1 B1 C1

A2 B2 C2

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠

and by P̃ the matrix obtained from P by erasing the first row and column of block matrices.
Let d�(x) and d�̃(x) denote the matrix-valued measures that give

P =
∫

xd�(x)

and

P̃ =
∫

xd�̃(x).

Introduce the matrix-valued function given by

�(x) =
∫

d�(x)

1 − xz
=

∞∑
n=0

Snz
n

with

Sn =
∫

xnd�(x).

If we denote with �̃(z), S̃n the corresponding objects for the matrix P̃, then it is not hard
to see that

�(z)S−1
0 (I − zB0 − z2C0�̃(z)S̃−1

0 A1) = I.

In terms of the Stieltjes transforms

B(z) =
∫

d�(x)

x − z

and

B̃(z) =
∫

d�̃(x)

x − z

one can rewrite the identity above in the form

B(z)S−1
0 (z − B0 + C0B̃(z)S̃−1

0 A1) + I = 0.

Formulae of this type appear in [AN] and a nice and simple proof is indicated in [DPS] and
credited to I. Schur. It is clear that the use of Schur complements can be used to great advantage
when in dealing with matrix-valued orthogonal polynomials. One can find expressions related
to these ones in theorem 2.6 of [DRSZ]. In that case some of the proofs are based on results
in [D1, D2].

To obtain d� form d̃� one still needs to recall what is usually called the Stieltjes inversion
formula which recovers a measure form its Stieltjes transform. For a good reference the reader
may want to consult [Wa].

6
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We will use this method to compute the orthogonality measure going with the ‘spider
graph’ as well as its variant indicated in the picture above and explained in detail in the next
section.

In the case of the ‘spider graph’ the result has already been given in [G3] where the result
was obtained by more painful methods. The use of what we call the Stieltjes method gives a
more compact form for the continuous part of the measure. As indicated in [G3] if p > 1/2
the measure coincides with its continuous part. For p < 1/2 one needs to add delta masses
(with matrix valued coefficients) at the points −1 and 1.

For the ‘spider graph’ with N legs, first considered in [DRSZ], in the notation of
section 2 we have

B0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 x2 x3 . . . xN

q 0 0 0

q

...

q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

C0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 0 0 . . . 0

0 p

p

. . .

0 0 0 . . . p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

Ci ≡ pI, i � 1;Bi = 0I, i � 1;Ai = qI, i � 1.

Consider now the symmetrized version of this matrix and the polynomials that come about
by choosing the first polynomial P0(x) as the diagonal matrix with entries

1,
√

xN−1/q,
√

xN−2/q, . . . .,
√

x1/q.

The use of the Stieltjes inversion method and the rest of the strategy described above give
for the continuous part of the matrix-valued orthogonality weight a simple expression. The
support of the measure is the interval |x| �

√
4pq, and the measure consists of a scalar factor,

namely √
4pq − x2

1 − x2
,

multiplied by a quadratic polynomial in x with N × N matrix coefficients given as follows:
Consider a matrix whose elements in the first row and column equal to zero, except

the 1, 1 element which is p/q. Of the remaining elements the diagonal ones are given by
(1 − xi)/xN−j+1 and the off-diagonal ones by −√

xixj /(xN−i+1xN−j+1). This matrix is then
multiplied by the factor q/p and this gives the constant term.

The coefficient of degree 1 in x is a symmetric matrix where all elements vanish except for
the first row starting with the entry 1, 2 and going to the right. The 1, j entry is

√
xj/xN−j+1.

The symmetric nature of this matrix dictates the elements of the first column.
Consider a matrix with the first row and column identically zero. The remaining elements

have the values (xi − q)/xN−j+1 on the main diagonal and the off-diagonal ones are given

7
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by
√

xixj /(xN−i+1xN−j+1). This matrix is multiplied by 1/p to give the coefficient of the
quadratic term in x.

5. A variant of a spider graph

For concreteness we will treat in detail the case of the graph given at the end of section 3 but
we write below the matrices that are used to generate the orthogonal polynomials in the case
of N legs going to infinity.

One has a center core and N legs that extend to infinity. If drawn properly the nodes on
these legs form a sequence of concentric circles surrounding the central core. This is clearly
a variant of a discrete version of the spiders considered by J B Walsh, [W, ES].

It is convenient to label the nodes in the center core as 1, 2, . . . N and then the N nodes
on the first circle as N + 1, N + 2, . . . , 2N in a counter-clockwise fashion. The N nodes in the
second circle are labeled as 2N + 1, 2N + 2, . . . , 3N , etc. The transition probabilities from
each of the nodes in the center core to each one of the remaining N − 1 nodes on the core are
taken to be 1−p

N−1 . The transition probability from each one of these nodes in the core to the
one node on the corresponding leg and located on the first circle is p.

For each node that is not on the center core, and therefore lies on one of the legs of the
graph, the probability of getting closer to the center core, while remaining on the same leg, is
given by the common value q = 1 − p while the probability of a transition moving one step
away from the center core, while staying on the same leg, is given by the common value p.

It is now convenient to consider N × N matrix-valued orthogonal polynomials Qj(x)

resulting from a block tridiagonal matrix with blocks given by the following expressions

B0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 (1 − p)/(N − 1) (1 − p)/(N − 1) . . . (1 − p)/(N − 1)

(1 − p)/(N − 1) 0 (1 − p)/(N − 1) . . . (1 − p)/(N − 1)

(1 − p)/(N − 1)

...

(1 − p)/(N − 1) (1 − p)/(N − 1) (1 − p)/(N − 1) . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

Ai ≡ qI, i � 1;Bi ≡ 0I, i � 1;Ci ≡ pI, i � 0.

We move now to the task of finding a 3 × 3 matrix-valued weight that makes the
corresponding polynomials, obtained from the recursion relation mentioned at the beginning
of the paper, orthogonal. Just as in the case of the ‘spider graph’ considered in the previous
section, one can use the Stieltjes method.

The orthogonality matrix consists of up to three parts. There is always an absolutely
continuous matrix-valued density supported in the interval |x| �

√
4pq, and given by

√
4pq − x2

2(1 − x)(p − 1)(2x + 3p + 1)

⎛
⎜⎝

α(x) β(x) β(x)

β(x) α(x) β(x)

β(x) β(x) α(x)

⎞
⎟⎠

with

α(x) = 2x − p − 3; β(x) = −(2x + p − 1).

8
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In the case when 1/5 < p < 1/2 we need to add a discrete matrix-valued mass

1 − 2p

3(1 − p)
π

⎛
⎜⎝

1 1 1

1 1 1

1 1 1

⎞
⎟⎠ δ1.

In the case when p < 1/5 there is one more piece to be included in the weight matrix,
namely,

(1 − 5p)

3(1 − p)
π

⎛
⎜⎝

2 −1 −1

−1 2 −1

−1 −1 2

⎞
⎟⎠ δxp

,

where

xp = −1/2 − 3p/2.

The point xp is always outside of the support of the density, and thus both delta masses (when
present) have supports outside the support of the density.

It is easy to write the orthogonal polynomials Qj(x) themselves in terms of the
simpler polynomials Tj (x) (which one may want to refer to as the Chebyshev polynomials)
corresponding to the same choice of matrix-valued coefficients as above, with the exception
of the matrix B0 which is now set equal to the zero matrix. If these simpler polynomials are
denoted by Tj (x) we get for our polynomials Qj(x) the expression

Qj(x) = Tj (x) +
p − 1

2p
Tj−1(x)

⎛
⎜⎝

0 1 1

1 0 1

1 1 0

⎞
⎟⎠ .

6. The invariant measure

Given any Markov chain the explicit computation of an invariant measure is a non-trivial
task. In the case of a birth-and-death process we recalled in section 3 that the norms of the
orthogonal polynomials give an expression for the invariant measure. This method is not
guaranteed to work, as we remarked earlier, for an arbitrary Markov chain obtained from a
block tridiagonal matrix. However in the case at hand, we get lucky, since the matrix-valued
squared norms of the successive polynomials Qi(x) given above happen to be diagonal and
given by

‖Qi‖2 = (q/p)iπI.
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